UCRL- 82992
PREPRINT

A Serial Internrocessor Communications
System

William Labiak
Philip Siemens
Carolyn Bailey

CIRCULATION COPY

SUBJECT TO RECALL
IN TWO WEEKS This Paper Was Prenared for Submittal to
DECUS Conference
Maheim, California
April 19, 1980

April 3, 1980

This is a preprint of a paper intended for publication in a journal or proceedings. Since
changes may be made before publication, this preprint is made available with the un-
derstanding that it will not be cited or reproduced without the permission of the author.

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor the
University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or the University of California, and shall not be used for advertising
or product endorsement purposes.

A SERIAL INTERPROCESSOR COMMUNICATIONS SYSTEM

William Labiak
Lawrence Livermore Laboratory
Livermore, California

Philip Siemens
Carolyn Bailey
Menlo Computer Associates
Palo Alto, California

ABSTRACT

A serial communications system based on the EIA RS232-C
standard with modem control Tines has been developed. The
DLV11-E interface is used for this purpose. A1l
handshaking is done with the modem control lines. This
allows totally independent full duplex communication. The
message format consists of eight bit data with odd parity
and a sixteen bit checksum on the whole message. Al
communications are fully interrupt driven. A program was
written to load a program into a remote LSI-11 using the

serial line without bootstrap ROM.

DESCRIPTION OF COMPUTER NETWORK

A large fusion energy experiment, the Mirror
Fusion Test Facility, is under construction at
Lawrence Livermore Laboratory. - This experiment
will be computer controlled. A hierarchical
computer system has been developed to perform
this function. The top level is the Supervisory
Control and Diagnostics System (SCDS). It con-
sists of nine Interdata 32 bit computers. These
computers are interconnected through a shared
memory. The next level is the Local Control and
Intrumentation System (LCIS) consisting of 65
LSI-11! computers connected to the Interdata
computers with serial lines. The LSI-11's are
interfaced to the experiment through the CAMAC
system. Because of the large number of LSI-11's,
it is important that communication using the
serial lines be efficient and inexpensive. The
Supervisory to Local Intercommunication Protocol
(SLIP) was developed to accomplish this.

HARDWARE SOFTWARE TRADEOFFS

In order to improve reliability and decrease
cost, the LSI-II'E have only a CPU, 32K words of
memory, a DLV11-E< and a CAMAC serial driver
interface. No other peripherals are used. A
method had to be developed to bootstrap these
computers. The console ODT provides sufficient
capability to load the DEC absolute loader. From
that point, the system can be brought up fully.
This required the DLV11-E to be at the console
address, however, the cost of a BDV1l per system
was saved. .

PROTOCOL DEFINITION

The communications protocol proceeds in the
following way. A transaction is initiated by the

*Work performed under the auspices of the U.S.
Department of Energy by the Lawrence Livermore
Laboratory under contract number W-7405-ENG-48.

transmitter setting the request to send (RQ2S).
The receiver gets this signal on its carrier
detect line. If the receiver is ready, it sets
the data terminal ready (DTR) line which is con-
nected to the clear to send (CL2S) on the trans-
mitter. The transmitter then sends the message
and a 16 bit checksum. When the message is
complete, the receiver calculates the checksum
and compares it with the one transmitted. If .it
is correct and no parity errors have occurred, an
Acknowledge (ACK) is sent to the transmitter. If
there was an error, a negative acknowledge (NAK)
js sent. The ACK or NAXK is sent by the receiver
clearing its DTR line and setting the secondary
transmit line high for an ACK and Tow for a NAK.
The transmitter Tooks at its secondary receiver
Tine for the ACK or NAK when it sees CL2S
cleared. The transmitter then clears RQ2S which
ends the transaction. If the transmitter sees a
NAK, it may retransmit if desired. (Fig. 1, 2)

Supervisory tocal Control v
Computer C
{interdats) (LS)1-11)
Tra ter R
RQ2S Carrier Detect
cL2s OTR
ACR ST
Recsi T
Carrier Detect RQzs
DTR CcL2s
RCY SR

Figure 1 Inter-Connection Diagram

]
|
|
|
]

Both the transmitter and receiver must know the
length of a message before it is sent. If a
different length message is to be sent, the
length of that message may be specified in the
previous message. This can be impiemented in
general by a short header message followed by a
data message.

The transmitter can abort by clearing its RQ2S

line. The receiver may abort by clearing its DTR
line. If the transmitter does not get CL2S after
a certain time or see CL2S cleared at the end of
transmission, it will time out and clear RQ2S.

If the receiver does not receive the appropriate
number of characters or the carrier cleared after

sending an ACK or NAK, 1t will time out and abort.

We also had to implement a virtual terminal capa-
bility so that we could interact with the remote
from the host's terminal. This situation led to
problems because it was often difficult to de-
termine in which machine a bug was occurring.

PROGRAMMER TEAM

The software described was designed and coded by

a two person programmer team consisting of a
senior systems level programmer and an entry

level programmer. The senior programmer provided
the design along with periodic support during the ,
coding and debug phases of the project. The

entry level programmer did the coding, debugging,
and documentation. This arrangement worked we??.

Figure 2 State Diagram

DEVELOPMENT SYSTEM CONFIGURATION

The system on which the software was developed
consisted of two computers. One, which we
labeled the host, was a reasonable software de-
velopment system running the RT-11 operating
system. The other, labeled the remote, was a
bare bones system.

The host consisted of a 32K word LSI-11/2 with
dual floppy disks, a VT-52 CRT terminal, an
LA-180 printer, and OLV11/E serial line inter-
face. Midway through the project, a 10 Mbyte
cartridge disk was added. Needless to say, there
was a noticeable improvement in throughput. We
could do several more compilations per day than
with the floppy disks, and our file management
problems were eased since we no longer had to
maintain several floppy disks with our files on
them. The host used the RT-11 V3B operating.
system and two languages -- MACRO-11 and OMSI
Pascal-1. TECO was the only editor used --
normally with a screen oriented editing macro,

The remote consisted of a 32K word LS1-11/2 with
a single DLVI1/E which was connected to the
OLV11/E on the host. The remote DLV11l/E was in-
stalled at the console terminal address {device
address 177560). There were no other interfaces
installed on the remote -- no terminals, mass
storage, or bootstrap ROM.

Because of the hardware configuration, we first
set about to design and code a down loading pro-
gram so we could load programs into the remote.

The junior programmer's experience previous to
this project consisted of FORTRAN and PDP-8 as-
sembly language. Nevertheless, Pascal and
MACRO-11 were quite easily learned. We used a
subset of Pascal with only three elementary data
types (integer, char, and array of char). Within
a couple of days, working programs were being
produced, which seems to indicate that Pascal is
indeed a simple language to learn and use.
MACRO-11 programs were likewise produced within a
reasonable time, although they were not speed or
space efficient., It seems that new PDP-11 pro-
grammers, expecially those with only PDP-8 ex-
perience, have difficulty at first making
efficient use of the PDP-11's registers.

GENERAL COMMUNICATION ROUTINES

In order to establish two way communicatfions
between a host and some remotes, a set of general
communication routines were written. These rou-
tines were written in assembly language as Pascal
callable procedures. They were intended to be
used in a stand-alone remote LSI-11 (although
they work equally well with an RT-11 system).

The routines provide six.basic functions which
are described below.

Initialization

A procedure called SLIPINIT initializes a number
of parameters concerning the protocol routines,
An example call is:

SLIPINIT (TIME, TRYNUM, ERROR).

TIME is an integer argument which sets the time
out period allowable on communication tasks.

Time is measured in clock ticks., TRYNUM is the
number of times a message is tried to be sent or
received before an error is reported to the
caller. ERROR is an error flag which is returned
as 0 if no errors occurred during the initial-
ization process.

Send Message

There are three routines used to send messages,
depending upon the degree of concurrency de-~
sired. The first is a send and wait procedure
called as:

SENDW (DATA, LENGTH, ERROR}.

DATA is the name of a variable (usually an array
or record) containing the characters to be sent.
LENGTH specifies the number of characters to be

sent. ERROR is an error flag which is returned

as zero if there are no errors.

A message transmission may be started and then
overlapped with the execution of the calling pro-
gram with the SEND (data, length, ervor) pro-
cedure. The variables are the same as described
above. Once the message transmission is started,
control returns to the caller. Eventually, the
calling program must synchronize with the message
transmission with the WAITSEND (error) pro-
cedure. WAITSEND will only return to the caller
when the message has been completely transmitted.

To invoke a completion routine when the message
has been transmitted, the SENDC (data, length,
error, complrtn) procedure may be called. The
variables are as described above except that
COMPLRTN is the name of a procedure which will be
invoked when the message transmission has been
completed. Completion routine procedures are
restricted to be gtobally accessible procedures.

Recejve Routines

There are a set of three receive message routines
which compliment the three message transmission
routines descibed above. They are invoked by:

RECVW (DATA, LENGTH, ERROR))
RECY (DATA, LENGTH, ERROR); WAITRECEIVE {ERROR)
RECVC {(DATA, LENGTH, ERROR, COMPLRTN)

The arguments are the same as described for the
transmission routines.

Status Routines

The current status of the send or receive rou-
tines can be determined by using the following
procedures: .

SENDST (STATE, LSTATE, CNT, RETRY, TIME)

RECVST (STATE, LSTATE, CNT, RETRY, TIME).

These procedures return the five argumeénts to the
caller. STATE gives the current protocol state.
Send states are:

-- idle

-~ request to send has been asserted, waiting
for clear to send

-- sending data

sending checksum

-- waiting for ACK/NAK

-- received an ACK

-- received a NAK

-- aborting transmission

NN -0
[}
]

Receive states are:

-- idte

-- waiting for request to send from transmitter

-- asserted clear to send, waiting for data

-- receiving data

receiving the checksum

-- sent ACK, waiting for sender to go idle

-- sent NAK, waiting for sender to go idle

-- aborting receiver

-- message too short, NAK, waiting for sender
to go idle »

NN WN =S
]
'

LSTATE is simply the last state before the
current one. In this way, one can determine the
particular error state which occurred before
idle.. CNT is the number of bytes in the message
yet to be sent or received. RETRY indicates how
many times the message has been retried due to
errors. TIME indicates how many clock ticks re-
main before the send or receive timer times out.

Error Status

An accumulated error count is kept for certain
receive errors. This accumulated count may be
retrieved by: '

ERRSTATUS (PECNT, ORCNT, SMCNT).

'PECNT returns the tota) number of messages with

parity errors, ORCNT returns the total number of
overrun errors, and SMCNT returns the total
number of short messages. This procedure sets
these three counters to zero so that a new
accumulatien begins.

Aborting A Transmission

Both the send and receive message operation can
be aborted before completion. This allows a
higher priority message to be dealt with as
rapidly as possible. The procedures ABORTSERD
and ABORTRECEIVE (no arguments are used) ac-
complish these tasks.

Exiting to RT-11 Moniter

Before exiting to the monitor {assuming the com-
munication routines are being used with an RT
system), some clean-up work must be done, or
trouble may result. First of all, interrupts
from the remote must be disabled since the moni-
tor does not know what to do with them.
Secondly, clock vectors must be restored to the
normal RT-11 configuration, or the system will
crash. A procedure called SLIPX is provided to
perform this clean up before exit, but the user

must still be careful in how the exit to monitor
is accomplished.

DOWNLOADER

The downloader allowed user programs to be trans-
ferred from the host system into the remote
LSI-11. It consisted of two distinctly different
parts -- the “HOST* system which sent the program
downline and acted as a virtual terminal for the
remote, and the loaders which ran in the remote
to receive the program coming downline.

The "HOST" portion of the downloader and large
portions of the remote were written in Pascal in
a top-down fashion. Because of the intimate
nature of the software with the hardware, how-
ever, we made use of some non-standard features
in OMSI Pascal-l (1ike the ability to reference
an absolute memory Tocation).

The "HOST" downloader program consisted of the
following procedures:

begin
send break;
turn remote interrupts off;
send L command;
send absolute loader {ABSLDR);
send protocol 1oade;;
send user file
end.
Send Break

The remote's serial interface (DLV-11/E) was
strapped such that when a2 "BREAK" was received,
the remote would be halted and a bus initialize
signal generated. Line “BREAKs" are generated
differently, depending on the characteristics of
the host's serial interface. With the LSI-11
host using a DLV-11/E interface, a "BREAK" was
generated by setting bit 0 in the XCSR register
to a 1 and then sending 3 null characters to
insure that the line was in a break condition
long enough for the remote to detect it.

Upon receiving a break, the remote sent a
sequence of characters back to the host. Several
tens of character times after sending the
“BREAK," the host checked the last character it
had received from the remote. If it was an “8"
character, the "BREAK" was assumed to have
worked. If not, the "BREAK" was sent again.
After a total of three tries, a fatal error was
reported on the host's terminal.

Turn Remote Interrupts Off

Because the clock vectors in the remote had not
been set, it was necessary to turn the remote’'s
interrupts off so no clock interrupts would
occur. To accomplish this, the host first opened
the remote's PSW by sending an "RS/" downline.
The remote should reply with the contents of its
PSW followed by a space . If this last charact-

er was not a space , then the "RS/" was resent
up to three times before a fatal error was
reported. With the PSW resister opened, the host
sent "200 cr " to turn the remote processor's
interrupts off and close the PSW. Again, the
remote sent back a character string, and the host
checked the last character to insure that it was
an "@" character.

L Command

We initially used the L command of the LSI-11/2
in the download process. The L command, of
course, is a built-in feature of the LSI-11/2's
micro-code. When this command is sent to the
remote, the remote enters a boot loader mode
which is normally used for loading paper tapes.
The host, however, can emilate a paper tape
reader and send the remote a character stream in
the expected boot format.

The host sends the string "177560L" to the re-
mote, which then enters boot loader mode. The
host then sends an ABSLOR to the remote. When
the ABSLDR has completely loaded, it autostarts
and immediately sends a one character ACK/NAK
message to the host. HOST will try to load the
ABSLDR three times before reporting a fatal error.

ABSLDR was written in assembly language rather
than Pascal because the constraint of using the
boot loader format required it to be small.

After the ACK/NAK, ABSLDR waits to receive a pro-
gram in standard .LDA (absolute binary) format.
This format essentially consists of a number of
blocks consistin? of header, data, and checksum.
If any of the calculated block checksums do not
agree with the transmitted checksums, an internal
error flag is set. When the whole program has
been received, the ABSLDR will again send an
ACK/NAK character to the host. The whole purpose
of the ABSLDR is to load a larger loader program
which operates under the SLIP protocol.

v

Protocol Loader

A1l but a few small modules of the protocol
loader were written in Pascal. We were concerned
about the size of the loader, but it required
less than 1088 bytes, which was acceptable in our
applications.

The protocol loader was totally position inde-
pendent. When started, it immediately relocated
itself into high memory, overlaying the ABSLDR.
The protocol loader then handshakes with the host
according to SLIP protocol rules. Messages are
fixed at 256 bytes long. One byte of the block
is a flag byte; the rest are data in standard
.LDA (absolute) format. The flag byte is used to
indicate end of message If a checksum error
occurs {either in the protocol checksum or in the
absolute binary (.LDA) data block checksum), the
protocol lcader NAK's and requests retrans-
mission. At the end of the message, the protocol
loader starts the received program if the
starting address is even, or waits for another
program to be downloaded if the starting address
is odd.

LSI-11 Host

The LSI-11 "HOST" program allowed a user at an
RT-11 system to download a program into a remote
LSI-11 and then interact with that remote through
a virtual terminal facility. Since characters
were received from the remote (19.2 Kbaud) faster
than they could be printed on a terminal (typi-
cally 9600 baud), a small ring buffer (1K bytes)
was used. A1l characters typed at the host's
keyboard, except for four control characters,
were passed through to the remote. Characters
from the remote were passed through to the host's
terminal, except for an "@" character which was
changed to an "&" character. This was done so
the user would not get confused about which
LSI-11 was in console ODT state. The control
characters were:

control B
Send a "BREAK" to the remote.

control D
Download a user specified program
“into the remote. The user is
prompted for a file specifica-
tion. The file supplied must be
in .LDA format.

control c

Normal exit to the RT-11 monitor.
The current state of the remote is
unchanged.

. control F
Load another program into the
remote using the protocol loader.
The initial bootstrapping with the
ABSLOR, etc., is bypassed. This
is valid only if the previously
loaded file did not start
execution.

SCDS Host

After the total system was up and running using
an LSI-11 host with the LSI-11 remotes, the host
program (written in Pascal) was moved to the
Perkin-Elmer machines. This was not as straight-
forward as one would like. The Pascal in use on
the Perkin-Elmers was not standard, so quite a
few changes were required. In addition, it was
essentially impossible to implement a virtual
terminal. Finally, an unforseen hardware inter-
action required a major change in the download
procedure. This can be described as follows.

The SCDS host system interface required the
OLY-11/E to have its Data Terminal Ready {DTR)
signal asserted before it could send any charac-
ters to the remote. This required a small modi-
fication to be made to the DLV-11/E so that its
DTR signal would be initialized high (asserted)
whenever a bus initialize signal occurred. Wue
encountered no problems with this scheme while
debugging with the LSI-11 host (it had no such
hardware restrictions and could send characters
even if the remote’'s DTR signal was not as-
serted). However, we hit an imnmediate problem
when we moved the system to the SCDS host.

The problem can be described as follows. During
the download processing, the host would send
“177560L" causing the remote to, enter its paper
tape boot loader microcode. At this point, DTR
would be cleared, and the host could no longer
transmit characters to the remote.

It rapidly became apparent that the LSI-11
micro-code to execute the L command did writes
into the DLV-11/E receiver control status

register and cleared the DTR bit. Thus, we could
not use the L command to load the ABSLOR, but
rather had to load it via console ODT as a serfes.
of octal words.

TECHNIQUES OF GENERAL INTEREST
Some of the techniques in these programs may be
of general interest. These will be described
below.

Posting Requests

Generally, for each state in the state diagrams,
(Fig. 2) we implemented a code sequence. Each
code segquence would be entered upon the occur-
rence of a particular event. In order to simpli-
fy the programming, we adopted a convention which
we called posting requests for these events.

When a request was posted, it designated which
event was desired and the address of the code
sequence to go to when that event occurred.
Macros were written which handled the posting of
these requests. The generated code to handle
these requests was handled in various ways.

For instance, in the message transmission rou-
tine, there were three code sequences used to
service the transmitter buffer empty interrupt.
These were: {a) send another data character, (b)
send first byte of the checksum, and (c) send the
last byte of the checksum. We defined a macro.
.PXBUF as follows:

-MACRO PXBUF A
MOV A,8#XVEC
.ENDM

where XVEC was equated to the transmitter vector
address. Invoking .PXBUF then sets the vector to
point to a new interrupt service rautine.

Requests for service ypon the occurrence of a
receiver or modem interrupt were handled dif-
ferently. Here, posting a request set the inter-
rupt service routine address into a pointer _
word. When the particular event occurred, a JSR
through the pointer word was performed. The
interrupt service routine executed and then
exited via an RTS PC. These requests could also
be cancelled, in which case the occurrence of the
event was simply ignored.

Posting timer requests was simjlar, except a
timer value was specified in addition to the rou-
tine address. When the timer expired, the speci-
fied routine was invoked,

As an example, here are some short code fragments
illustrating the use of these macros.

;Start a message transmission by asserting
request to send

:§§CL1 #CL2S1 ;Here we request that when
;clear to send goes to 1, the
;interrupt service routine at

;CL2S1 is invoked

JITIMR TIME,TIML ;Start a timer with a value of
i sTIME ticks, If it times out,
;invoke the code at TIML.
;This insures that we do not
;hang if we never see clear to
;send asserted

Modem Vectoring

A modem interrupt occurred whenever one of the

three modem lines changed state (either a zero to

one or a one to zero transition). We were only
interested in changes on two of the lines --
Carrier Detect and Clear to Send. Modem inter-
rupts from other sources were ignored. Since we
needed to know which bit caused the interrupt and
in which direction its transition was, we main-
tained a copy of the modem line states at the
last interrupt. By comparing the current modem
line state with the last state, we could tell
what line caused the interrupt.

Our first version did actual ‘compares and
branches to decode what transition caused an
interrupt, but this code had more overhead in it
than we wished. We finally arrived at a branch
table configuration (similar to a CASE
structure}. This was the best we could do for
processing speed, although we still wished for
something better. A skeleton of this code is
shown below.

;Both chdracter ready and modem’ interrupts vector
here

$RMINT: TSTB @#RCSR ;Check for character
;ready
;Branch if no

;character is ready

BPL $MODX

;éérvice-iﬁe character which is ready

$MODX: PUSH RO ;Save RO on the stack
MOV @#RCSR,RO ;set copy of RCSR into
;RO

SWAB RO ;set modem bits to low
;byte
ASR RO ;shift right

BIC #B8C30,R0 ;Keep new modem state
;0 000 000 000 ONN 000

BIS (PC)+,R0 ;0r in old modem state
;0 000 000 000 ONN LLO
;RO now indexes into a
;16 entry branch table

LASTMD: O
JMP @ATABL({RO) ;G0 to the proper
;service routine

ATABL: S$S.EXIT sNo change

$.CARO ;Carrier went to 0

$.CL20 ;Clear tb send went to O

$.CARD ;Both carrier and clear to
;send went to O

$.CAR1 ;Carrier went to a 1

$.EXIT ;No change

s

$.CAROD: BICB #2,LASTMD ;Update last modem
; interrupt state
ves ;Go to particular
;service routine

$.CL20: BICB #4,LASTMD ;Update last modem
;interrupt state
. ;6o to particuler
;service routine

$.CAR]1: BISB #2,LASTMD ;Update last modem
;interrupt state
cen ;60 to particular
;service routine

Timers

It was necessary to put time-out periods on some
of the communication tasks. If an operation did
not complete within the allotted time period,
then some error was indicated. Only two timers
were required, one for the transmit process and
one for the receive process. These timer rou-
tines were interesting in that they were trans-
parent to any other clock routines in the machine.

It was assumed that the user's program would set
up the clock vector as required for its use and
then call the protocol communication initializa-
tion routine., This initialization routine would
insert the timer routines between the clock vec-
tor and the user's clock service routines by
saving the current clock vector and then setting
the vector to point to the communication timer
service routines. The timer service routines
would not dismiss via an RTI but would jump to
the user's clock routines with the PSW set
properly. These routines were used with the
RT-11 operating system with the restriction that
before program exit the clock vector had to be
restored to normal.

Speed Techniques

Some considerable effort was expended in order to
make the general communication routines as fast
as possible. The techniques we used should be
generally applicable. First of all, we noted
that absolute addressing modes on the LSI-11/2
execute faster than relative addressing modes
(source and destination times are approximately
15% faster). Therefore, we assembled all the
routines with the MACRO-11 directive .ENABL AMA
which causes absolute addressing to be the de-
fault instead of relative,

It should be obviocus that effectively using the
resisters leads not only to the fastest code, but
also to the smallest. Although we kept this in
mind while writing the code, we nevertheless were
able to improve performance in an iterative
manner by repeatedly checking the code for places

where we could rearrange the code to make better
use of the resisters,

The critical areas were those code sequences
executed during an interrupt. Our original
design goal called for full duplex communication
at 9600 baud. This meant we would be handling
two interrupts per millisecond {one for the
transmitter and one for the receiver}. A short
code sequence from the receive character inter-
rupt service routine will illustrate some speed
techniques.
RRBUF: .PRBUF #RRBUF1 ;Set up next
;character
yready interrupt
;to go to RRBUF1
MOV #SHORT,R.TIMR ;Set up a timer to
. ;detect if the
;message is shorter
;than we expect.
;If timer expires,
;go to SHORT
;Reset the timer to
;its initial value
;An initiatization
;routine sets
;RRBUF142 to
;its initial value
MOV ®#RBUF,-(SP) ;save character on

RRBUF1; MOV #0,3RTIMR

TIME2= RRBUF1+2

;the stack

BPL PCONT ;:Branch if there is
;no error

MOV (SP),0PFLG ;Save the error for
; later

;Decrement the char
;counter for this

PCONT: DEC {PC)+

;message
RCTR1 O ; Immediate
;addressing is
;fastest here
BEQ RSLIP ;Branch if done
MOVB (SP+,@(PC)+ ;Store the
;character in the
;buffer
REBUF1: O ;Pointer into the
;bhuffer

INC @#RBUF1 ;Increment the

;buffer point

e

Note that while the techniques illustrated above
may be fast, they are not necessarily good pro-
gramming practice from other points of view.
Nevertheless, we were able to achieve full duplex
transmission at 19.2K baud -- the equivalent of
one interrupt every 250 microseconds.

T-Bit Problem

Periodically, we would find that we could not get
our downloader to run in the remote. This was
often true after the remote had been powered up.
An examination of memory would show that our pro-
gram had been wiped out and memory would be
filled with a particular repeating pattern.

The problem was finally traced to the following.
The LSI-11/2 can power up with the T-bit "sort of
set.” We say "sort of set" because if you ex-
amine the PSW with the 00T command RS/ you will
find the T-bit on, but in fact no trace traps

will occur until after the first interrupt
occurs, That is, after power up, the PSW may
show the T-bit on, but no traps will occur until
after the first interrupt. When the first inter-
rupt occurs, the PSW with the T-bit on is pushed
onto the stack, and the interrupt service routine

- is executed. When the interrupt is dismissed

with the RTI instruction, the PSW is reloaded
with a pop from the stack, and now the T-bit is
"really" on. A trace trap then occurs with a
vector to Tocation 14, Since we did not expect
trace traps, we had not initialized the vector,
so 1t contained whatever it was set to at power
up.

Interestingly, 1t was not a random value. After
power up, memory consistently contains alternate
words of all zeroes and all ones. (This also
occurs with memory systems other than those manu-
factured by DEC.) Thus, location 14 contained a
0 and 16 contained 177777. When the first trace
trap occurred, the old PC and PSW were pushed
onto the stack, the new PC was set to 0, and the
new PSW set to 377. Note that the T-bit was
still set, so instead of executing the in-
struction in location 0, another trace trap
occurred. Continuous trace traps now occurred
until the stack pointer decremented down th¥ough
0 and a double bus error occurred. Memory, from
the initial stack pointer value (we set out stack
pointer to high memory during the loading pro-

_cess) down to location O was filled with alter-

nate words of 0 and 377. We protected ourselves
against this occurrence by the following:

ASECT
. =14 sInitialize the
;T-bit vector
CLTBIT
340
CLTBIT: MOV #340,2(sP) sReplace old PSW

;which had T-bit set
RTI swith new one with
;T-bit cleared

PROBLEMS WITH BA1l BACK PLANE

This communications system was first developed
for communications between two LSI-11's. This
system can be used between any two LSI-11's, and
the communications place no restriction on the
address of the DLV11-E, An interesting hardware
problem occurs, however, if the BA11-NE chassis
is used. This chassis has a 9 x 4 backplane with
nine Q-bus slots and nine slots for the RLV11
controller board to board interconnect. If a
system with CPU, memory, terminal interface,
floppy disc, RLOl hard disc, printer interface,
DLV11-E for communicatfons, and bootstrap is used
there are no extra Q-bus slots, yet there are
seven unused backplane connectors. Many other
applications require more than nine Q-bus slots.
It would be very desireable to have an 8 x 4
backplane with sixteen Q-bus slots and an RLO1
controller on a single quad board. The BAl1l-NE
chassis is excellent electrically amd mechani-
cally, and if it had a larger capacity backplane
it would be used more. As it is, other sources
must be used.

DEC Q-BUS INTERFACE CHIPS

While developing the communications programs, a
problem with the 0C003 interrupt control chip was
found. Occasionally, the transmitter done inter-
rupt would not occur. This was tracked down with
test programs and a logic analyzer. Once in a
while the UART would send out the transmitter
done but the DCO03 would not send the interrupt
request. The output of the UART has a very long
rise time and sometimes it is too slow for the
DCO03 interrupt input. The problem is solved by
buffering this signal through extra gates on the
DLV11-E. This is the correction suggested in an
ECO given by DEC after we pointed the problem out
to them. 1t s suggested that the DCOO3 chip be
driven by TTL circuits in any design.

Two Interrupts 0n Same Vector Problem

As we began to use the DLV-11/E, it became ap-
parent that it was not designed to be used in the
manner we intended to use it. Both character
ready and modem interrupts were handled through
the same vector, and this presented some problems
since both could be occurring simultaneously.
First of all, we wanted to process character
ready interrupts as efficiently as possible, but
since we always had to check to see if it was a
madem interrupt, we added additional overhead
into each character interrupt. Secondly, the
standard DLV-11/E clears the modem interrupt flag
whenever the RCSR is referenced, either by a DATI
(read) or DATO [write) cycle. This means that in
the process of setting or clearing one of the
modem control bits, a modem interrupt could be
lost. The problem was finally solved by another
small modificaton to the DLV-11/E such that the
modem interrupt flag would be cleared only by an
explicit instruction. (One of the programmable
baud rate bits in the XCSR was used since pro-
grammable baud rates were disabled.)

In general, it is not a good idea to have simul-
taneously occurring interrupts going through the
same vector. Interrupt processing overhead goes
up, and in some cases, like the DLV-11/E, fool-
proof code may be impossible to write.

CONCLUSION

It took nine months to develop this software.

The hardware problems which cropped vp took about
25 percent of the time to identify and solve.

The system has been running reliably for almost
one year. ’

Communications between two computers is always
difficult to accomplish, but once a system is
running, applications are easy. Many programs
using these communications procedures have been
written and are running successfully.

ACKNOWLEDGEMENT
We would like to thank P.R. McGoldrick for

developing the protocol and D. N. Butner for his
aid in testing with the Interdata computers.

REFERENCES

1. Microcomputer Processors Digital Equipment
Corp., Maynard, MA~ (1978)

2. Memories and Peripherals Digital Equipment
Corp., Maynard, MA~ [1978)

NOTICE

This report was prepared as an account of work sponsored by the United
States Government. Neither the United States nor the United States
Department of Energy, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness or usefulness of any information, apparatus,
product or process disclosed, or represents that its use would not infringe
privately-owned rights.

Reference to a company or prdduct name does not i.mply' approval or
recommendation of the product by the University of California or the U.S.
Department of Energy to the exclusion of others that may be suitable.

